table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgeev.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgeev.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgeev.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DGEEV (jobvl, jobvr, n, a, lda, wr, wi, vl,
ldvl, vr, ldvr, work, lwork, info)
DGEEV computes the eigenvalues and, optionally, the left and/or right
eigenvectors for GE matrices
Function/Subroutine Documentation¶
subroutine DGEEV (character jobvl, character jobvr, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) wr, double precision, dimension( * ) wi, double precision, dimension( ldvl, * ) vl, integer ldvl, double precision, dimension( ldvr, * ) vr, integer ldvr, double precision, dimension( * ) work, integer lwork, integer info)¶
DGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices
Purpose:
!> !> DGEEV computes for an N-by-N real nonsymmetric matrix A, the !> eigenvalues and, optionally, the left and/or right eigenvectors. !> !> The right eigenvector v(j) of A satisfies !> A * v(j) = lambda(j) * v(j) !> where lambda(j) is its eigenvalue. !> The left eigenvector u(j) of A satisfies !> u(j)**H * A = lambda(j) * u(j)**H !> where u(j)**H denotes the conjugate-transpose of u(j). !> !> The computed eigenvectors are normalized to have Euclidean norm !> equal to 1 and largest component real. !>
Parameters
JOBVL
!> JOBVL is CHARACTER*1 !> = 'N': left eigenvectors of A are not computed; !> = 'V': left eigenvectors of A are computed. !>
JOBVR
!> JOBVR is CHARACTER*1 !> = 'N': right eigenvectors of A are not computed; !> = 'V': right eigenvectors of A are computed. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !> On exit, A has been overwritten. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
WR
!> WR is DOUBLE PRECISION array, dimension (N) !>
WI
!> WI is DOUBLE PRECISION array, dimension (N) !> WR and WI contain the real and imaginary parts, !> respectively, of the computed eigenvalues. Complex !> conjugate pairs of eigenvalues appear consecutively !> with the eigenvalue having the positive imaginary part !> first. !>
VL
!> VL is DOUBLE PRECISION array, dimension (LDVL,N) !> If JOBVL = 'V', the left eigenvectors u(j) are stored one !> after another in the columns of VL, in the same order !> as their eigenvalues. !> If JOBVL = 'N', VL is not referenced. !> If the j-th eigenvalue is real, then u(j) = VL(:,j), !> the j-th column of VL. !> If the j-th and (j+1)-st eigenvalues form a complex !> conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and !> u(j+1) = VL(:,j) - i*VL(:,j+1). !>
LDVL
!> LDVL is INTEGER !> The leading dimension of the array VL. LDVL >= 1; if !> JOBVL = 'V', LDVL >= N. !>
VR
!> VR is DOUBLE PRECISION array, dimension (LDVR,N) !> If JOBVR = 'V', the right eigenvectors v(j) are stored one !> after another in the columns of VR, in the same order !> as their eigenvalues. !> If JOBVR = 'N', VR is not referenced. !> If the j-th eigenvalue is real, then v(j) = VR(:,j), !> the j-th column of VR. !> If the j-th and (j+1)-st eigenvalues form a complex !> conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and !> v(j+1) = VR(:,j) - i*VR(:,j+1). !>
LDVR
!> LDVR is INTEGER !> The leading dimension of the array VR. LDVR >= 1; if !> JOBVR = 'V', LDVR >= N. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,3*N), and !> if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good !> performance, LWORK must generally be larger. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the QR algorithm failed to compute all the !> eigenvalues, and no eigenvectors have been computed; !> elements i+1:N of WR and WI contain eigenvalues which !> have converged. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 190 of file dgeev.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |