table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/clqt01.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/clqt01.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/clqt01.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine CLQT01 (m, n, a, af, q, l, lda, tau, work,
lwork, rwork, result)
CLQT01
Function/Subroutine Documentation¶
subroutine CLQT01 (integer m, integer n, complex, dimension( lda, * ) a, complex, dimension( lda, * ) af, complex, dimension( lda, * ) q, complex, dimension( lda, * ) l, integer lda, complex, dimension( * ) tau, complex, dimension( lwork ) work, integer lwork, real, dimension( * ) rwork, real, dimension( * ) result)¶
CLQT01
Purpose:
!> !> CLQT01 tests CGELQF, which computes the LQ factorization of an m-by-n !> matrix A, and partially tests CUNGLQ which forms the n-by-n !> orthogonal matrix Q. !> !> CLQT01 compares L with A*Q', and checks that Q is orthogonal. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> The m-by-n matrix A. !>
AF
!> AF is COMPLEX array, dimension (LDA,N) !> Details of the LQ factorization of A, as returned by CGELQF. !> See CGELQF for further details. !>
Q
!> Q is COMPLEX array, dimension (LDA,N) !> The n-by-n orthogonal matrix Q. !>
L
!> L is COMPLEX array, dimension (LDA,max(M,N)) !>
LDA
!> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and L. !> LDA >= max(M,N). !>
TAU
!> TAU is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by CGELQF. !>
WORK
!> WORK is COMPLEX array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !>
RWORK
!> RWORK is REAL array, dimension (max(M,N)) !>
RESULT
!> RESULT is REAL array, dimension (2) !> The test ratios: !> RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) !> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 124 of file clqt01.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |