Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/clatrz.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/clatrz.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/clatrz.f

SYNOPSIS

Functions/Subroutines


subroutine CLATRZ (m, n, l, a, lda, tau, work)
CLATRZ factors an upper trapezoidal matrix by means of unitary transformations.

Function/Subroutine Documentation

subroutine CLATRZ (integer m, integer n, integer l, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work)

CLATRZ factors an upper trapezoidal matrix by means of unitary transformations.

Purpose:

!>
!> CLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix
!> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z by means
!> of unitary transformations, where  Z is an (M+L)-by-(M+L) unitary
!> matrix and, R and A1 are M-by-M upper triangular matrices.
!> 

Parameters

M

!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

L

!>          L is INTEGER
!>          The number of columns of the matrix A containing the
!>          meaningful part of the Householder vectors. N-M >= L >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the leading M-by-N upper trapezoidal part of the
!>          array A must contain the matrix to be factorized.
!>          On exit, the leading M-by-M upper triangular part of A
!>          contains the upper triangular matrix R, and elements N-L+1 to
!>          N of the first M rows of A, with the array TAU, represent the
!>          unitary matrix Z as a product of M elementary reflectors.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

TAU

!>          TAU is COMPLEX array, dimension (M)
!>          The scalar factors of the elementary reflectors.
!> 

WORK

!>          WORK is COMPLEX array, dimension (M)
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:

!>
!>  The factorization is obtained by Householder's method.  The kth
!>  transformation matrix, Z( k ), which is used to introduce zeros into
!>  the ( m - k + 1 )th row of A, is given in the form
!>
!>     Z( k ) = ( I     0   ),
!>              ( 0  T( k ) )
!>
!>  where
!>
!>     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
!>                                                 (   0    )
!>                                                 ( z( k ) )
!>
!>  tau is a scalar and z( k ) is an l element vector. tau and z( k )
!>  are chosen to annihilate the elements of the kth row of A2.
!>
!>  The scalar tau is returned in the kth element of TAU and the vector
!>  u( k ) in the kth row of A2, such that the elements of z( k ) are
!>  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
!>  the upper triangular part of A1.
!>
!>  Z is given by
!>
!>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
!> 

Definition at line 139 of file clatrz.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK