table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/clatrz.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/clatrz.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/clatrz.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine CLATRZ (m, n, l, a, lda, tau, work)
CLATRZ factors an upper trapezoidal matrix by means of unitary
transformations.
Function/Subroutine Documentation¶
subroutine CLATRZ (integer m, integer n, integer l, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work)¶
CLATRZ factors an upper trapezoidal matrix by means of unitary transformations.
Purpose:
!> !> CLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix !> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means !> of unitary transformations, where Z is an (M+L)-by-(M+L) unitary !> matrix and, R and A1 are M-by-M upper triangular matrices. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
L
!> L is INTEGER !> The number of columns of the matrix A containing the !> meaningful part of the Householder vectors. N-M >= L >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the leading M-by-N upper trapezoidal part of the !> array A must contain the matrix to be factorized. !> On exit, the leading M-by-M upper triangular part of A !> contains the upper triangular matrix R, and elements N-L+1 to !> N of the first M rows of A, with the array TAU, represent the !> unitary matrix Z as a product of M elementary reflectors. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX array, dimension (M) !> The scalar factors of the elementary reflectors. !>
WORK
!> WORK is COMPLEX array, dimension (M) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn.,
Knoxville, USA
Further Details:
!> !> The factorization is obtained by Householder's method. The kth !> transformation matrix, Z( k ), which is used to introduce zeros into !> the ( m - k + 1 )th row of A, is given in the form !> !> Z( k ) = ( I 0 ), !> ( 0 T( k ) ) !> !> where !> !> T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ), !> ( 0 ) !> ( z( k ) ) !> !> tau is a scalar and z( k ) is an l element vector. tau and z( k ) !> are chosen to annihilate the elements of the kth row of A2. !> !> The scalar tau is returned in the kth element of TAU and the vector !> u( k ) in the kth row of A2, such that the elements of z( k ) are !> in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in !> the upper triangular part of A1. !> !> Z is given by !> !> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). !>
Definition at line 139 of file clatrz.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |