Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/claqr4.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/claqr4.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/claqr4.f

SYNOPSIS

Functions/Subroutines


subroutine CLAQR4 (wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork, info)
CLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.

Function/Subroutine Documentation

subroutine CLAQR4 (logical wantt, logical wantz, integer n, integer ilo, integer ihi, complex, dimension( ldh, * ) h, integer ldh, complex, dimension( * ) w, integer iloz, integer ihiz, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, integer lwork, integer info)

CLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.

Purpose:

!>
!>    CLAQR4 implements one level of recursion for CLAQR0.
!>    It is a complete implementation of the small bulge multi-shift
!>    QR algorithm.  It may be called by CLAQR0 and, for large enough
!>    deflation window size, it may be called by CLAQR3.  This
!>    subroutine is identical to CLAQR0 except that it calls CLAQR2
!>    instead of CLAQR3.
!>
!>    CLAQR4 computes the eigenvalues of a Hessenberg matrix H
!>    and, optionally, the matrices T and Z from the Schur decomposition
!>    H = Z T Z**H, where T is an upper triangular matrix (the
!>    Schur form), and Z is the unitary matrix of Schur vectors.
!>
!>    Optionally Z may be postmultiplied into an input unitary
!>    matrix Q so that this routine can give the Schur factorization
!>    of a matrix A which has been reduced to the Hessenberg form H
!>    by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
!> 

Parameters

WANTT

!>          WANTT is LOGICAL
!>          = .TRUE. : the full Schur form T is required;
!>          = .FALSE.: only eigenvalues are required.
!> 

WANTZ

!>          WANTZ is LOGICAL
!>          = .TRUE. : the matrix of Schur vectors Z is required;
!>          = .FALSE.: Schur vectors are not required.
!> 

N

!>          N is INTEGER
!>           The order of the matrix H.  N >= 0.
!> 

ILO

!>          ILO is INTEGER
!> 

IHI

!>          IHI is INTEGER
!>           It is assumed that H is already upper triangular in rows
!>           and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
!>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
!>           previous call to CGEBAL, and then passed to CGEHRD when the
!>           matrix output by CGEBAL is reduced to Hessenberg form.
!>           Otherwise, ILO and IHI should be set to 1 and N,
!>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
!>           If N = 0, then ILO = 1 and IHI = 0.
!> 

H

!>          H is COMPLEX array, dimension (LDH,N)
!>           On entry, the upper Hessenberg matrix H.
!>           On exit, if INFO = 0 and WANTT is .TRUE., then H
!>           contains the upper triangular matrix T from the Schur
!>           decomposition (the Schur form). If INFO = 0 and WANT is
!>           .FALSE., then the contents of H are unspecified on exit.
!>           (The output value of H when INFO > 0 is given under the
!>           description of INFO below.)
!>
!>           This subroutine may explicitly set H(i,j) = 0 for i > j and
!>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
!> 

LDH

!>          LDH is INTEGER
!>           The leading dimension of the array H. LDH >= max(1,N).
!> 

W

!>          W is COMPLEX array, dimension (N)
!>           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
!>           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
!>           stored in the same order as on the diagonal of the Schur
!>           form returned in H, with W(i) = H(i,i).
!> 

ILOZ

!>          ILOZ is INTEGER
!> 

IHIZ

!>          IHIZ is INTEGER
!>           Specify the rows of Z to which transformations must be
!>           applied if WANTZ is .TRUE..
!>           1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
!> 

Z

!>          Z is COMPLEX array, dimension (LDZ,IHI)
!>           If WANTZ is .FALSE., then Z is not referenced.
!>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
!>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
!>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
!>           (The output value of Z when INFO > 0 is given under
!>           the description of INFO below.)
!> 

LDZ

!>          LDZ is INTEGER
!>           The leading dimension of the array Z.  if WANTZ is .TRUE.
!>           then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.
!> 

WORK

!>          WORK is COMPLEX array, dimension LWORK
!>           On exit, if LWORK = -1, WORK(1) returns an estimate of
!>           the optimal value for LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>           The dimension of the array WORK.  LWORK >= max(1,N)
!>           is sufficient, but LWORK typically as large as 6*N may
!>           be required for optimal performance.  A workspace query
!>           to determine the optimal workspace size is recommended.
!>
!>           If LWORK = -1, then CLAQR4 does a workspace query.
!>           In this case, CLAQR4 checks the input parameters and
!>           estimates the optimal workspace size for the given
!>           values of N, ILO and IHI.  The estimate is returned
!>           in WORK(1).  No error message related to LWORK is
!>           issued by XERBLA.  Neither H nor Z are accessed.
!> 

INFO

!>          INFO is INTEGER
!>             = 0:  successful exit
!>             > 0:  if INFO = i, CLAQR4 failed to compute all of
!>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
!>                and WI contain those eigenvalues which have been
!>                successfully computed.  (Failures are rare.)
!>
!>                If INFO > 0 and WANT is .FALSE., then on exit,
!>                the remaining unconverged eigenvalues are the eigen-
!>                values of the upper Hessenberg matrix rows and
!>                columns ILO through INFO of the final, output
!>                value of H.
!>
!>                If INFO > 0 and WANTT is .TRUE., then on exit
!>
!>           (*)  (initial value of H)*U  = U*(final value of H)
!>
!>                where U is a unitary matrix.  The final
!>                value of  H is upper Hessenberg and triangular in
!>                rows and columns INFO+1 through IHI.
!>
!>                If INFO > 0 and WANTZ is .TRUE., then on exit
!>
!>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
!>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
!>
!>                where U is the unitary matrix in (*) (regard-
!>                less of the value of WANTT.)
!>
!>                If INFO > 0 and WANTZ is .FALSE., then Z is not
!>                accessed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA

References:


K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
Performance, SIAM Journal of Matrix Analysis, volume 23, pages
929--947, 2002.


K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948--973, 2002.

Definition at line 246 of file claqr4.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK