table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/chsein.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/chsein.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/chsein.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine CHSEIN (side, eigsrc, initv, select, n, h, ldh,
w, vl, ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info)
CHSEIN
Function/Subroutine Documentation¶
subroutine CHSEIN (character side, character eigsrc, character initv, logical, dimension( * ) select, integer n, complex, dimension( ldh, * ) h, integer ldh, complex, dimension( * ) w, complex, dimension( ldvl, * ) vl, integer ldvl, complex, dimension( ldvr, * ) vr, integer ldvr, integer mm, integer m, complex, dimension( * ) work, real, dimension( * ) rwork, integer, dimension( * ) ifaill, integer, dimension( * ) ifailr, integer info)¶
CHSEIN
Purpose:
!> !> CHSEIN uses inverse iteration to find specified right and/or left !> eigenvectors of a complex upper Hessenberg matrix H. !> !> The right eigenvector x and the left eigenvector y of the matrix H !> corresponding to an eigenvalue w are defined by: !> !> H * x = w * x, y**h * H = w * y**h !> !> where y**h denotes the conjugate transpose of the vector y. !>
Parameters
SIDE
!> SIDE is CHARACTER*1 !> = 'R': compute right eigenvectors only; !> = 'L': compute left eigenvectors only; !> = 'B': compute both right and left eigenvectors. !>
EIGSRC
!> EIGSRC is CHARACTER*1 !> Specifies the source of eigenvalues supplied in W: !> = 'Q': the eigenvalues were found using CHSEQR; thus, if !> H has zero subdiagonal elements, and so is !> block-triangular, then the j-th eigenvalue can be !> assumed to be an eigenvalue of the block containing !> the j-th row/column. This property allows CHSEIN to !> perform inverse iteration on just one diagonal block. !> = 'N': no assumptions are made on the correspondence !> between eigenvalues and diagonal blocks. In this !> case, CHSEIN must always perform inverse iteration !> using the whole matrix H. !>
INITV
!> INITV is CHARACTER*1 !> = 'N': no initial vectors are supplied; !> = 'U': user-supplied initial vectors are stored in the arrays !> VL and/or VR. !>
SELECT
!> SELECT is LOGICAL array, dimension (N) !> Specifies the eigenvectors to be computed. To select the !> eigenvector corresponding to the eigenvalue W(j), !> SELECT(j) must be set to .TRUE.. !>
N
!> N is INTEGER !> The order of the matrix H. N >= 0. !>
H
!> H is COMPLEX array, dimension (LDH,N) !> The upper Hessenberg matrix H. !> If a NaN is detected in H, the routine will return with INFO=-6. !>
LDH
!> LDH is INTEGER !> The leading dimension of the array H. LDH >= max(1,N). !>
W
!> W is COMPLEX array, dimension (N) !> On entry, the eigenvalues of H. !> On exit, the real parts of W may have been altered since !> close eigenvalues are perturbed slightly in searching for !> independent eigenvectors. !>
VL
!> VL is COMPLEX array, dimension (LDVL,MM) !> On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must !> contain starting vectors for the inverse iteration for the !> left eigenvectors; the starting vector for each eigenvector !> must be in the same column in which the eigenvector will be !> stored. !> On exit, if SIDE = 'L' or 'B', the left eigenvectors !> specified by SELECT will be stored consecutively in the !> columns of VL, in the same order as their eigenvalues. !> If SIDE = 'R', VL is not referenced. !>
LDVL
!> LDVL is INTEGER !> The leading dimension of the array VL. !> LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. !>
VR
!> VR is COMPLEX array, dimension (LDVR,MM) !> On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must !> contain starting vectors for the inverse iteration for the !> right eigenvectors; the starting vector for each eigenvector !> must be in the same column in which the eigenvector will be !> stored. !> On exit, if SIDE = 'R' or 'B', the right eigenvectors !> specified by SELECT will be stored consecutively in the !> columns of VR, in the same order as their eigenvalues. !> If SIDE = 'L', VR is not referenced. !>
LDVR
!> LDVR is INTEGER !> The leading dimension of the array VR. !> LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. !>
MM
!> MM is INTEGER !> The number of columns in the arrays VL and/or VR. MM >= M. !>
M
!> M is INTEGER !> The number of columns in the arrays VL and/or VR required to !> store the eigenvectors (= the number of .TRUE. elements in !> SELECT). !>
WORK
!> WORK is COMPLEX array, dimension (N*N) !>
RWORK
!> RWORK is REAL array, dimension (N) !>
IFAILL
!> IFAILL is INTEGER array, dimension (MM) !> If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left !> eigenvector in the i-th column of VL (corresponding to the !> eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the !> eigenvector converged satisfactorily. !> If SIDE = 'R', IFAILL is not referenced. !>
IFAILR
!> IFAILR is INTEGER array, dimension (MM) !> If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right !> eigenvector in the i-th column of VR (corresponding to the !> eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the !> eigenvector converged satisfactorily. !> If SIDE = 'L', IFAILR is not referenced. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, i is the number of eigenvectors which !> failed to converge; see IFAILL and IFAILR for further !> details. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Each eigenvector is normalized so that the element of largest !> magnitude has magnitude 1; here the magnitude of a complex number !> (x,y) is taken to be |x|+|y|. !>
Definition at line 242 of file chsein.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |