Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/chbt21.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/chbt21.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/chbt21.f

SYNOPSIS

Functions/Subroutines


subroutine CHBT21 (uplo, n, ka, ks, a, lda, d, e, u, ldu, work, rwork, result)
CHBT21

Function/Subroutine Documentation

subroutine CHBT21 (character uplo, integer n, integer ka, integer ks, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) d, real, dimension( * ) e, complex, dimension( ldu, * ) u, integer ldu, complex, dimension( * ) work, real, dimension( * ) rwork, real, dimension( 2 ) result)

CHBT21

Purpose:

!>
!> CHBT21  generally checks a decomposition of the form
!>
!>         A = U S U**H
!>
!> where **H means conjugate transpose, A is hermitian banded, U is
!> unitary, and S is diagonal (if KS=0) or symmetric
!> tridiagonal (if KS=1).
!>
!> Specifically:
!>
!>         RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
!>         RESULT(2) = | I - U U**H | / ( n ulp )
!> 

Parameters

UPLO

!>          UPLO is CHARACTER
!>          If UPLO='U', the upper triangle of A and V will be used and
!>          the (strictly) lower triangle will not be referenced.
!>          If UPLO='L', the lower triangle of A and V will be used and
!>          the (strictly) upper triangle will not be referenced.
!> 

N

!>          N is INTEGER
!>          The size of the matrix.  If it is zero, CHBT21 does nothing.
!>          It must be at least zero.
!> 

KA

!>          KA is INTEGER
!>          The bandwidth of the matrix A.  It must be at least zero.  If
!>          it is larger than N-1, then max( 0, N-1 ) will be used.
!> 

KS

!>          KS is INTEGER
!>          The bandwidth of the matrix S.  It may only be zero or one.
!>          If zero, then S is diagonal, and E is not referenced.  If
!>          one, then S is symmetric tri-diagonal.
!> 

A

!>          A is COMPLEX array, dimension (LDA, N)
!>          The original (unfactored) matrix.  It is assumed to be
!>          hermitian, and only the upper (UPLO='U') or only the lower
!>          (UPLO='L') will be referenced.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of A.  It must be at least 1
!>          and at least min( KA, N-1 ).
!> 

D

!>          D is REAL array, dimension (N)
!>          The diagonal of the (symmetric tri-) diagonal matrix S.
!> 

E

!>          E is REAL array, dimension (N-1)
!>          The off-diagonal of the (symmetric tri-) diagonal matrix S.
!>          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
!>          (3,2) element, etc.
!>          Not referenced if KS=0.
!> 

U

!>          U is COMPLEX array, dimension (LDU, N)
!>          The unitary matrix in the decomposition, expressed as a
!>          dense matrix (i.e., not as a product of Householder
!>          transformations, Givens transformations, etc.)
!> 

LDU

!>          LDU is INTEGER
!>          The leading dimension of U.  LDU must be at least N and
!>          at least 1.
!> 

WORK

!>          WORK is COMPLEX array, dimension (N**2)
!> 

RWORK

!>          RWORK is REAL array, dimension (N)
!> 

RESULT

!>          RESULT is REAL array, dimension (2)
!>          The values computed by the two tests described above.  The
!>          values are currently limited to 1/ulp, to avoid overflow.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 150 of file chbt21.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK