Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/chbgv.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/chbgv.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/chbgv.f

SYNOPSIS

Functions/Subroutines


subroutine CHBGV (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork, info)
CHBGV

Function/Subroutine Documentation

subroutine CHBGV (character jobz, character uplo, integer n, integer ka, integer kb, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldbb, * ) bb, integer ldbb, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)

CHBGV

Purpose:

!>
!> CHBGV computes all the eigenvalues, and optionally, the eigenvectors
!> of a complex generalized Hermitian-definite banded eigenproblem, of
!> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
!> and banded, and B is also positive definite.
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 

KA

!>          KA is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
!> 

KB

!>          KB is INTEGER
!>          The number of superdiagonals of the matrix B if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
!> 

AB

!>          AB is COMPLEX array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the Hermitian band
!>          matrix A, stored in the first ka+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
!>
!>          On exit, the contents of AB are destroyed.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KA+1.
!> 

BB

!>          BB is COMPLEX array, dimension (LDBB, N)
!>          On entry, the upper or lower triangle of the Hermitian band
!>          matrix B, stored in the first kb+1 rows of the array.  The
!>          j-th column of B is stored in the j-th column of the array BB
!>          as follows:
!>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
!>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
!>
!>          On exit, the factor S from the split Cholesky factorization
!>          B = S**H*S, as returned by CPBSTF.
!> 

LDBB

!>          LDBB is INTEGER
!>          The leading dimension of the array BB.  LDBB >= KB+1.
!> 

W

!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

Z

!>          Z is COMPLEX array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
!>          eigenvectors, with the i-th column of Z holding the
!>          eigenvector associated with W(i). The eigenvectors are
!>          normalized so that Z**H*B*Z = I.
!>          If JOBZ = 'N', then Z is not referenced.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= N.
!> 

WORK

!>          WORK is COMPLEX array, dimension (N)
!> 

RWORK

!>          RWORK is REAL array, dimension (3*N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, and i is:
!>             <= N:  the algorithm failed to converge:
!>                    i off-diagonal elements of an intermediate
!>                    tridiagonal form did not converge to zero;
!>             > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF
!>                    returned INFO = i: B is not positive definite.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 181 of file chbgv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK