table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/cget22.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/cget22.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/cget22.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine CGET22 (transa, transe, transw, n, a, lda, e,
lde, w, work, rwork, result)
CGET22
Function/Subroutine Documentation¶
subroutine CGET22 (character transa, character transe, character transw, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( lde, * ) e, integer lde, complex, dimension( * ) w, complex, dimension( * ) work, real, dimension( * ) rwork, real, dimension( 2 ) result)¶
CGET22
Purpose:
!> !> CGET22 does an eigenvector check. !> !> The basic test is: !> !> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) !> !> using the 1-norm. It also tests the normalization of E: !> !> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) !> j !> !> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a !> vector. The max-norm of a complex n-vector x in this case is the !> maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n. !>
Parameters
TRANSA
!> TRANSA is CHARACTER*1 !> Specifies whether or not A is transposed. !> = 'N': No transpose !> = 'T': Transpose !> = 'C': Conjugate transpose !>
TRANSE
!> TRANSE is CHARACTER*1 !> Specifies whether or not E is transposed. !> = 'N': No transpose, eigenvectors are in columns of E !> = 'T': Transpose, eigenvectors are in rows of E !> = 'C': Conjugate transpose, eigenvectors are in rows of E !>
TRANSW
!> TRANSW is CHARACTER*1 !> Specifies whether or not W is transposed. !> = 'N': No transpose !> = 'T': Transpose, same as TRANSW = 'N' !> = 'C': Conjugate transpose, use -WI(j) instead of WI(j) !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> The matrix whose eigenvectors are in E. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
E
!> E is COMPLEX array, dimension (LDE,N) !> The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors !> are stored in the columns of E, if TRANSE = 'T' or 'C', the !> eigenvectors are stored in the rows of E. !>
LDE
!> LDE is INTEGER !> The leading dimension of the array E. LDE >= max(1,N). !>
W
!> W is COMPLEX array, dimension (N) !> The eigenvalues of A. !>
WORK
!> WORK is COMPLEX array, dimension (N*N) !>
RWORK
!> RWORK is REAL array, dimension (N) !>
RESULT
!> RESULT is REAL array, dimension (2) !> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) !> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) !> j !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 142 of file cget22.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |