table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/VARIANTS/qr/LL/cgeqrf.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/VARIANTS/qr/LL/cgeqrf.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/VARIANTS/qr/LL/cgeqrf.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine CGEQRF (m, n, a, lda, tau, work, lwork, info)
CGEQRF VARIANT: left-looking Level 3 BLAS version of the algorithm.
Function/Subroutine Documentation¶
subroutine CGEQRF (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer lwork, integer info)¶
CGEQRF VARIANT: left-looking Level 3 BLAS version of the algorithm. Purpose:
!> !> CGEQRF computes a QR factorization of a complex M-by-N matrix A: !> A = Q * R. !> !> This is the left-looking Level 3 BLAS version of the algorithm. !> !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the min(M,N)-by-N upper trapezoidal matrix R (R is !> upper triangular if m >= n); the elements below the diagonal, !> with the array TAU, represent the orthogonal matrix Q as a !> product of min(m,n) elementary reflectors (see Further !> Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !>
!> The dimension of the array WORK. LWORK >= 1 if MIN(M,N) = 0, !> otherwise the dimension can be divided into three parts. !>
!> 1) The part for the triangular factor T. If the very last T is not bigger !> than any of the rest, then this part is NB x ceiling(K/NB), otherwise, !> NB x (K-NT), where K = min(M,N) and NT is the dimension of the very last T !>
!> 2) The part for the very last T when T is bigger than any of the rest T. !> The size of this part is NT x NT, where NT = K - ceiling ((K-NX)/NB) x NB, !> where K = min(M,N), NX is calculated by !> NX = MAX( 0, ILAENV( 3, 'CGEQRF', ' ', M, N, -1, -1 ) ) !>
!> 3) The part for dlarfb is of size max((N-M)*K, (N-M)*NB, K*NB, NB*NB) !>
!> So LWORK = part1 + part2 + part3 !>
!> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016
Further Details
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v' !> !> where tau is a real scalar, and v is a real vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), !> and tau in TAU(i). !> !>
Definition at line 151 of file cgeqrf.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |