table of contents
        
      
      
    
      other versions
    
    - Tumbleweed 3.12.1-3.1
- Leap-16.0
| SRC/lapack_64_obj/cgeqp3.f(3) | Library Functions Manual | SRC/lapack_64_obj/cgeqp3.f(3) | 
NAME¶
SRC/lapack_64_obj/cgeqp3.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine CGEQP3 (m, n, a, lda, jpvt, tau, work, lwork,
    rwork, info)
  
  CGEQP3
  
Function/Subroutine Documentation¶
subroutine CGEQP3 (integer m, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex, dimension( * ) tau, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer info)¶
CGEQP3
Purpose:
!> !> CGEQP3 computes a QR factorization with column pivoting of a !> matrix A: A*P = Q*R using Level 3 BLAS. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the upper triangle of the array contains the !> min(M,N)-by-N upper trapezoidal matrix R; the elements below !> the diagonal, together with the array TAU, represent the !> unitary matrix Q as a product of min(M,N) elementary !> reflectors. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
JPVT
!> JPVT is INTEGER array, dimension (N) !> On entry, if JPVT(J).ne.0, the J-th column of A is permuted !> to the front of A*P (a leading column); if JPVT(J)=0, !> the J-th column of A is a free column. !> On exit, if JPVT(J)=K, then the J-th column of A*P was the !> the K-th column of A. !>
TAU
!> TAU is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors. !>
WORK
!> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO=0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= N+1. !> For optimal performance LWORK >= ( N+1 )*NB, where NB !> is the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
RWORK
!> RWORK is REAL array, dimension (2*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a real/complex vector !> with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in !> A(i+1:m,i), and tau in TAU(i). !>
Contributors:
G. Quintana-Orti, Depto. de Informatica, Universidad
  Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA
Definition at line 158 of file cgeqp3.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.1 | LAPACK |