table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/DEPRECATED/cgegs.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/DEPRECATED/cgegs.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/DEPRECATED/cgegs.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine CGEGS (jobvsl, jobvsr, n, a, lda, b, ldb, alpha,
beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork, info)
CGEGS computes the eigenvalues, Schur form, and, optionally, the left and
or/right Schur vectors of a complex matrix pair (A,B)
Function/Subroutine Documentation¶
subroutine CGEGS (character jobvsl, character jobvsr, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( * ) alpha, complex, dimension( * ) beta, complex, dimension( ldvsl, * ) vsl, integer ldvsl, complex, dimension( ldvsr, * ) vsr, integer ldvsr, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer info)¶
CGEGS computes the eigenvalues, Schur form, and, optionally, the left and or/right Schur vectors of a complex matrix pair (A,B)
Purpose:
!> !> This routine is deprecated and has been replaced by routine CGGES. !> !> CGEGS computes the eigenvalues, Schur form, and, optionally, the !> left and or/right Schur vectors of a complex matrix pair (A,B). !> Given two square matrices A and B, the generalized Schur !> factorization has the form !> !> A = Q*S*Z**H, B = Q*T*Z**H !> !> where Q and Z are unitary matrices and S and T are upper triangular. !> The columns of Q are the left Schur vectors !> and the columns of Z are the right Schur vectors. !> !> If only the eigenvalues of (A,B) are needed, the driver routine !> CGEGV should be used instead. See CGEGV for a description of the !> eigenvalues of the generalized nonsymmetric eigenvalue problem !> (GNEP). !>
Parameters
JOBVSL
!> JOBVSL is CHARACTER*1 !> = 'N': do not compute the left Schur vectors; !> = 'V': compute the left Schur vectors (returned in VSL). !>
JOBVSR
!> JOBVSR is CHARACTER*1 !> = 'N': do not compute the right Schur vectors; !> = 'V': compute the right Schur vectors (returned in VSR). !>
N
!> N is INTEGER !> The order of the matrices A, B, VSL, and VSR. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA, N) !> On entry, the matrix A. !> On exit, the upper triangular matrix S from the generalized !> Schur factorization. !>
LDA
!> LDA is INTEGER !> The leading dimension of A. LDA >= max(1,N). !>
B
!> B is COMPLEX array, dimension (LDB, N) !> On entry, the matrix B. !> On exit, the upper triangular matrix T from the generalized !> Schur factorization. !>
LDB
!> LDB is INTEGER !> The leading dimension of B. LDB >= max(1,N). !>
ALPHA
!> ALPHA is COMPLEX array, dimension (N) !> The complex scalars alpha that define the eigenvalues of !> GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur !> form of A. !>
BETA
!> BETA is COMPLEX array, dimension (N) !> The non-negative real scalars beta that define the !> eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element !> of the triangular factor T. !> !> Together, the quantities alpha = ALPHA(j) and beta = BETA(j) !> represent the j-th eigenvalue of the matrix pair (A,B), in !> one of the forms lambda = alpha/beta or mu = beta/alpha. !> Since either lambda or mu may overflow, they should not, !> in general, be computed. !>
VSL
!> VSL is COMPLEX array, dimension (LDVSL,N) !> If JOBVSL = 'V', the matrix of left Schur vectors Q. !> Not referenced if JOBVSL = 'N'. !>
LDVSL
!> LDVSL is INTEGER !> The leading dimension of the matrix VSL. LDVSL >= 1, and !> if JOBVSL = 'V', LDVSL >= N. !>
VSR
!> VSR is COMPLEX array, dimension (LDVSR,N) !> If JOBVSR = 'V', the matrix of right Schur vectors Z. !> Not referenced if JOBVSR = 'N'. !>
LDVSR
!> LDVSR is INTEGER !> The leading dimension of the matrix VSR. LDVSR >= 1, and !> if JOBVSR = 'V', LDVSR >= N. !>
WORK
!> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,2*N). !> For good performance, LWORK must generally be larger. !> To compute the optimal value of LWORK, call ILAENV to get !> blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute: !> NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR; !> the optimal LWORK is N*(NB+1). !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
RWORK
!> RWORK is REAL array, dimension (3*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> =1,...,N: !> The QZ iteration failed. (A,B) are not in Schur !> form, but ALPHA(j) and BETA(j) should be correct for !> j=INFO+1,...,N. !> > N: errors that usually indicate LAPACK problems: !> =N+1: error return from CGGBAL !> =N+2: error return from CGEQRF !> =N+3: error return from CUNMQR !> =N+4: error return from CUNGQR !> =N+5: error return from CGGHRD !> =N+6: error return from CHGEQZ (other than failed !> iteration) !> =N+7: error return from CGGBAK (computing VSL) !> =N+8: error return from CGGBAK (computing VSR) !> =N+9: error return from CLASCL (various places) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 222 of file cgegs.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |