table of contents
        
      
      
    | std::ranges::fold_left_first(3) | C++ Standard Libary | std::ranges::fold_left_first(3) | 
NAME¶
std::ranges::fold_left_first - std::ranges::fold_left_first
Synopsis¶
 Defined in header <algorithm>
  
   Call signature
  
   template< std::input_iterator I, std::sentinel_for<I> S,
  
   /*indirectly-binary-left-foldable*/<std::iter_value_t<I>, I> F
    >
  
   requires std::constructible_from<std::iter_value_t<I>, (1)
    (since C++23)
  
   std::iter_reference_t<I>>
  
   constexpr auto
  
   fold_left_first( I first, S last, F f );
  
   template< ranges::input_range R,
  
   /*indirectly-binary-left-foldable*/<
  
   ranges::range_value_t<R>, ranges::iterator_t<R>>
  
   F >
  
   requires std::constructible_from< (2) (since C++23)
  
   ranges::range_value_t<R>,
  
   ranges::range_reference_t<R>>
  
   constexpr auto
  
   fold_left_first( R&& r, F f );
  
   Helper concepts
  
   template< class F, class T, class I > (exposition
  
   concept /*indirectly-binary-left-foldable*/ = /* see description (3)
    only*)
  
   */;
  
   Left-folds the elements of given range, that is, returns the result of
    evaluation of
  
   the chain expression:
  
   f(f(f(f(x[1], x[2]), x[3]), ...), x[n]), where x[1], x[2], ..., x[n] are
    elements of
  
   the range.
  
   Informally, ranges::fold_left_first behaves like std::accumulate's overload
    that
  
   accepts a binary predicate, except that the *first is used internally as an
    initial
  
   element.
  
   The behavior is undefined if [first, last) is not a valid range.
  
   1) The range is [first, last). Equivalent to return
  
   ranges::fold_left_first_with_iter(std::move(first), last, f).value.
  
   2) Same as (1), except that uses r as the range, as if by using
    ranges::begin(r) as
  
   first and ranges::end(r) as last.
  
   3) Equivalent to:
  
   Helper concepts
  
   template< class F, class T, class I, class U >
  
   concept /*indirectly-binary-left-foldable-impl*/ =
  
   std::movable<T> &&
  
   std::movable<U> &&
  
   std::convertible_to<T, U> && (3A) (exposition only*)
  
   std::invocable<F&, U, std::iter_reference_t<I>> &&
  
   std::assignable_from<U&,
  
   std::invoke_result_t<F&, U,
  
   std::iter_reference_t<I>>>;
  
   template< class F, class T, class I >
  
   concept /*indirectly-binary-left-foldable*/ =
  
   std::copy_constructible<F> &&
  
   std::indirectly_readable<I> &&
  
   std::invocable<F&, T, std::iter_reference_t<I>> &&
  
   std::convertible_to<std::invoke_result_t<F&, T, (3B) (exposition
    only*)
  
   std::iter_reference_t<I>>,
  
   std::decay_t<std::invoke_result_t<F&, T,
  
   std::iter_reference_t<I>>>> &&
  
   /*indirectly-binary-left-foldable-impl*/<F, T, I,
  
   std::decay_t<std::invoke_result_t<F&, T,
  
   std::iter_reference_t<I>>>>;
  
   The function-like entities described on this page are niebloids, that is:
  
   * Explicit template argument lists cannot be specified when calling any of
    them.
  
   * None of them are visible to argument-dependent lookup.
  
   * When any of them are found by normal unqualified lookup as the name to the
    left
  
   of the function-call operator, argument-dependent lookup is inhibited.
  
   In practice, they may be implemented as function objects, or with special
    compiler
  
   extensions.
Parameters¶
 first, last - the range of elements to fold
  
   r - the range of elements to fold
  
   f - the binary function object
Return value¶
 An object of type std::optional<U> that contains the result
    of left-fold of the
  
   given range over f, where U is equivalent to
  
   decltype(ranges::fold_left(std::move(first), last,
    std::iter_value_t<I>(*first),
  
   f)).
  
   If the range is empty, std::optional<U>() is returned.
Possible implementations¶
 struct fold_left_first_fn
  
   {
  
   template<std::input_iterator I, std::sentinel_for<I> S,
  
   /*indirectly-binary-left-foldable*/<std::iter_value_t<I>, I>
    F>
  
   requires
  
   std::constructible_from<std::iter_value_t<I>,
    std::iter_reference_t<I>>
  
   constexpr auto operator()(I first, S last, F f) const
  
   {
  
   using U = decltype(
  
   ranges::fold_left(std::move(first), last, std::iter_value_t<I>(*first),
    f)
  
   );
  
   if (first == last)
  
   return std::optional<U>();
  
   std::optional<U> init(std::in_place, *first);
  
   for (++first; first != last; ++first)
  
   *init = std::invoke(f, std::move(*init), *first);
  
   return std::move(init);
  
   }
  
   template<ranges::input_range R,
  
   /*indirectly-binary-left-foldable*/<
  
   ranges::range_value_t<R>, ranges::iterator_t<R>> F>
  
   requires
  
   std::constructible_from<ranges::range_value_t<R>,
    ranges::range_reference_t<R>>
  
   constexpr auto operator()(R&& r, F f) const
  
   {
  
   return (*this)(ranges::begin(r), ranges::end(r), std::ref(f));
  
   }
  
   };
  
   inline constexpr fold_left_first_fn fold_left_first;
Complexity¶
 Exactly ranges::distance(first, last) - 1 (assuming the range is
    not empty)
  
   applications of the function object f.
Notes¶
The following table compares all constrained folding algorithms:
  
   Fold function template Starts Initial Return type
  
   from value
  
   ranges::fold_left left init U
  
   ranges::fold_left_first left first std::optional<U>
  
   element
  
   ranges::fold_right right init U
  
   ranges::fold_right_last right last std::optional<U>
  
   element
  
   (1) ranges::in_value_result<I, U>
  
   ranges::fold_left_with_iter left init (2)
    ranges::in_value_result<BR, U>,
  
   where BR is
  
   ranges::borrowed_iterator_t<R>
  
   (1) ranges::in_value_result<I,
  
   std::optional<U>>
  
   ranges::fold_left_first_with_iter left first (2)
    ranges::in_value_result<BR,
  
   element std::optional<U>>
  
   where BR is
  
   ranges::borrowed_iterator_t<R>
  
   Feature-test macro Value Std Feature
  
   __cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms
Example¶
// Run this code
  
   #include <algorithm>
  
   #include <functional>
  
   #include <iostream>
  
   #include <ranges>
  
   #include <utility>
  
   #include <vector>
  
   int main()
  
   {
  
   std::vector v{1, 2, 3, 4, 5, 6, 7, 8};
  
   auto sum = std::ranges::fold_left_first(v.begin(), v.end(),
    std::plus<int>()); // (1)
  
   std::cout << "*sum: " << sum.value() << '\n';
  
   auto mul = std::ranges::fold_left_first(v, std::multiplies<int>()); //
    (2)
  
   std::cout << "*mul: " << mul.value() << '\n';
  
   // get the product of the std::pair::second of all pairs in the vector:
  
   std::vector<std::pair<char, float>> data {{'A', 3.f}, {'B',
    3.5f}, {'C', 4.f}};
  
   auto sec = std::ranges::fold_left_first
  
   (
  
   data | std::ranges::views::values, std::multiplies<>()
  
   );
  
   std::cout << "*sec: " << *sec << '\n';
  
   // use a program defined function object (lambda-expression):
  
   auto val = std::ranges::fold_left_first(v, [](int x, int y) { return x + y +
    13; });
  
   std::cout << "*val: " << *val << '\n';
  
   }
Output:¶
 *sum: 36
  
   *mul: 40320
  
   *sec: 42
  
   *val: 127
References¶
* C++23 standard (ISO/IEC 14882:2023):
  
   * 27.6.18 Fold [alg.fold]
See also¶
 ranges::fold_left left-folds a range of elements
  
   (C++23) (niebloid)
  
   ranges::fold_right right-folds a range of elements
  
   (C++23) (niebloid)
  
   ranges::fold_right_last right-folds a range of elements using the last
  
   (C++23) element as an initial value
  
   (niebloid)
  
   ranges::fold_left_with_iter left-folds a range of elements, and returns a
    pair
  
   (C++23) (iterator, value)
  
   (niebloid)
  
   left-folds a range of elements using the first
  
   ranges::fold_left_first_with_iter element as an initial value, and returns a
    pair
  
   (C++23) (iterator, optional)
  
   (niebloid)
  
   accumulate sums up or folds a range of elements
  
   (function template)
  
   reduce similar to std::accumulate, except out of order
  
   (C++17) (function template)
| 2024.06.10 | http://cppreference.com |