table of contents
        
      
      
    | std::ranges::contains,std::ranges::contains_subrange(3) | C++ Standard Libary | std::ranges::contains,std::ranges::contains_subrange(3) | 
NAME¶
std::ranges::contains,std::ranges::contains_subrange - std::ranges::contains,std::ranges::contains_subrange
Synopsis¶
 Defined in header <algorithm>
  
   Call signature
  
   template< std::input_iterator I, std::sentinel_for<I> S,
  
   class T,
  
   class Proj = std::identity > (since
  
   requires std::indirect_binary_predicate<ranges::equal_to, C++23)
  
   std::projected<I, Proj>, (until
  
   const T*> C++26)
  
   constexpr bool contains( I first, S last, const T& value,
  
   Proj proj = {} );
  
   template< std::input_iterator I, std::sentinel_for<I> S,
  
   class Proj = std::identity,
  
   class T = std::projected_value_t<I, Proj> >
  
   requires std::indirect_binary_predicate<ranges::equal_to, (since
  
   std::projected<I, Proj>, C++26)
  
   const T*>
  
   constexpr bool contains( I first, S last, const T& value,
  
   Proj proj = {} );
  
   template< ranges::input_range R,
  
   class T,
  
   class Proj = std::identity > (since
  
   requires std::indirect_binary_predicate<ranges::equal_to, C++23)
  
   (until
  
   std::projected<ranges::iterator_t<R>, Proj>, C++26)
  
   const T*>
  
   constexpr bool contains( R&& r, const T& value, Proj proj =
  
   {} );
  
   template< ranges::input_range R,
  
   class Proj = std::identity,
  
   class T =
  
   std::projected_value_t<ranges::iterator_t<R>, Proj> >
  
   requires std::indirect_binary_predicate<ranges::equal_to, (1)
    (since
  
   C++26)
  
   std::projected<ranges::iterator_t<R>, Proj>,
  
   const T*>
  
   constexpr bool contains( R&& r, const T& value, Proj proj =
  
   {} );
  
   template< std::forward_iterator I1, std::sentinel_for<I1>
  
   S1,
  
   std::forward_iterator I2, std::sentinel_for<I2> (2)
  
   S2,
  
   class Pred = ranges::equal_to,
  
   class Proj1 = std::identity, class Proj2 =
  
   std::identity > (3) (since
  
   requires std::indirectly_comparable<I1, I2, Pred, Proj1, C++23)
  
   Proj2>
  
   constexpr bool contains_subrange( I1 first1, S1 last1, I2
  
   first2, S2 last2,
  
   Pred pred = {},
  
   Proj1 proj1 = {}, Proj2
  
   proj2 = {} );
  
   template< ranges::forward_range R1, ranges::forward_range
  
   R2,
  
   class Pred = ranges::equal_to,
  
   class Proj1 = std::identity, class Proj2 =
  
   std::identity >
  
   requires std::indirectly_comparable<ranges::iterator_t<R1>,
    (4) (since
  
   ranges::iterator_t<R2>, C++23)
  
   Pred, Proj1, Proj2>
  
   constexpr bool contains_subrange( R1&& r1, R2&& r2, Pred
  
   pred = {},
  
   Proj1 proj1 = {}, Proj2
  
   proj2 = {} );
  
   1) Search-based algorithm that checks whether or not a given range contains a
    value
  
   with iterator-sentinel pairs.
  
   2) Same as (1) but uses r as the source range, as if using
    ranges::begin(r) as first
  
   and ranges::end(r) as last.
  
   3) Search-based algorithm that checks whether or not a given range is a
    subrange of
  
   another range with iterator-sentinel pairs.
  
   4) Same as (3) but uses r1 as the first source range and r2 as the
    second source
  
   range, as if using ranges::begin(r1) as first1, ranges::end(r1) as last1,
  
   ranges::begin(r2) as first2, and ranges::end(r2) as last2.
  
   The function-like entities described on this page are niebloids, that is:
  
   * Explicit template argument lists cannot be specified when calling any of
    them.
  
   * None of them are visible to argument-dependent lookup.
  
   * When any of them are found by normal unqualified lookup as the name to the
    left
  
   of the function-call operator, argument-dependent lookup is inhibited.
  
   In practice, they may be implemented as function objects, or with special
    compiler
  
   extensions.
Parameters¶
 first, last - the range of elements to examine
  
   r - the range of the elements to examine
  
   value - value to compare the elements to
  
   pred - predicate to apply to the projected elements
  
   proj - projection to apply to the elements
Return value¶
 1,2) : ranges::find(std::move(first), last, value, proj) != last
  
   3,4) : first2 == last2 || !ranges::search(first1, last1, first2, last2, pred,
    proj1,
  
   proj2).empty()
Complexity¶
At most last - first applications of the predicate and projection.
Notes¶
 Up until C++20, we've had to write std::ranges::find(r, value) !=
  
   std::ranges::end(r) to determine if a single value is inside a range. And to
    check
  
   if a range contains a subrange of interest, we use not
    std::ranges::search(haystack,
  
   needle).empty(). While this is accurate, it isn't necessarily convenient, and
    it
  
   hardly expresses intent (especially in the latter case). Being able to say
  
   std::ranges::contains(r, value) addresses both of these points.
  
   ranges::contains_subrange, same as ranges::search, but as opposed to
    std::search,
  
   provides no access to Searchers (such as Boyer-Moore).
  
   Feature-test macro Value Std Feature
  
   __cpp_lib_ranges_contains 202207L (C++23) std::ranges::contains and
  
   ranges::contains_subrange
  
   __cpp_lib_algorithm_default_value_type 202403 (C++26) List-initialization for
  
   algorithms (1,2)
Possible implementation¶
 contains (1,2)
  
   struct __contains_fn
  
   {
  
   template<std::input_iterator I, std::sentinel_for<I> S,
  
   class Proj = std::identity,
  
   class T = std::projected_value_t<I, Proj>>
  
   requires std::indirect_binary_predicate<ranges::equal_to,
    std::projected<I, Proj>,
  
   const T*>
  
   constexpr bool operator()(I first, S last, const T& value, Proj proj =
    {}) const
  
   {
  
   return ranges::find(std::move(first), last, value, proj) != last;
  
   }
  
   template<ranges::input_range R,
  
   class Proj = std::identity,
  
   class T = std::projected_value_t<ranges::iterator_t<R>, Proj>>
  
   requires std::indirect_binary_predicate<ranges::equal_to,
  
   std::projected<ranges::iterator_t<R>, Proj>,
  
   const T*>
  
   constexpr bool operator()(R&& r, const T& value, Proj proj = {})
    const
  
   {
  
   return (*this)(ranges::begin(r), ranges::end(r), std::move(value), proj);
  
   }
  
   };
  
   inline constexpr __contains_fn contains {};
  
   contains_subrange (3,4)
  
   struct __contains_subrange_fn
  
   {
  
   template<std::forward_iterator I1, std::sentinel_for<I1> S1,
  
   std::forward_iterator I2, std::sentinel_for<I2> S2,
  
   class Pred = ranges::equal_to,
  
   class Proj1 = std::identity, class Proj2 = std::identity>
  
   requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
  
   constexpr bool operator()(I1 first1, S1 last1,
  
   I2 first2, S2 last2,
  
   Pred pred = {},
  
   Proj1 proj1 = {}, Proj2 proj2 = {}) const
  
   {
  
   return (first2 == last2) ||
  
   !ranges::search(first1, last1, first2, last2, pred, proj1, proj2).empty();
  
   }
  
   template<ranges::forward_range R1, ranges::forward_range R2,
  
   class Pred = ranges::equal_to,
  
   class Proj1 = std::identity, class Proj2 = std::identity>
  
   requires std::indirectly_comparable<ranges::iterator_t<R1>,
  
   ranges::iterator_t<R2>, Pred, Proj1, Proj2>
  
   constexpr bool operator()(R1&& r1, R2&& r2,
  
   Pred pred = {},
  
   Proj1 proj1 = {}, Proj2 proj2 = {}) const
  
   {
  
   return (*this)(ranges::begin(r1), ranges::end(r1),
  
   ranges::begin(r2), ranges::end(r2), std::move(pred),
  
   std::move(proj1), std::move(proj2));
  
   }
  
   };
  
   inline constexpr __contains_subrange_fn contains_subrange {};
Example¶
// Run this code
  
   #include <algorithm>
  
   #include <array>
  
   #include <complex>
  
   namespace ranges = std::ranges;
  
   int main()
  
   {
  
   constexpr auto haystack = std::array{3, 1, 4, 1, 5};
  
   constexpr auto needle = std::array{1, 4, 1};
  
   constexpr auto bodkin = std::array{2, 5, 2};
  
   static_assert(
  
   ranges::contains(haystack, 4) &&
  
   !ranges::contains(haystack, 6) &&
  
   ranges::contains_subrange(haystack, needle) &&
  
   !ranges::contains_subrange(haystack, bodkin)
  
   );
  
   constexpr std::array<std::complex<double>, 3> nums{{{1, 2}, {3,
    4}, {5, 6}}};
  
   #ifdef __cpp_lib_algorithm_default_value_type
  
   static_assert(ranges::contains(nums, {3, 4}));
  
   #else
  
   static_assert(ranges::contains(nums, std::complex<double>{3, 4}));
  
   #endif
  
   }
See also¶
 ranges::find
  
   ranges::find_if
  
   ranges::find_if_not finds the first element satisfying specific criteria
  
   (C++20) (niebloid)
  
   (C++20)
  
   (C++20)
  
   ranges::search searches for a range of elements
  
   (C++20) (niebloid)
  
   ranges::binary_search determines if an element exists in a partially-ordered
    range
  
   (C++20) (niebloid)
  
   ranges::includes returns true if one sequence is a subsequence of another
  
   (C++20) (niebloid)
  
   ranges::all_of
  
   ranges::any_of checks if a predicate is true for all, any or none of the
  
   ranges::none_of elements in a range
  
   (C++20) (niebloid)
  
   (C++20)
  
   (C++20)
| 2024.06.10 | http://cppreference.com |