Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slarrk.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slarrk.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slarrk.f

SYNOPSIS

Functions/Subroutines


subroutine SLARRK (n, iw, gl, gu, d, e2, pivmin, reltol, w, werr, info)
SLARRK computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy.

Function/Subroutine Documentation

subroutine SLARRK (integer n, integer iw, real gl, real gu, real, dimension( * ) d, real, dimension( * ) e2, real pivmin, real reltol, real w, real werr, integer info)

SLARRK computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy.

Purpose:

!>
!> SLARRK computes one eigenvalue of a symmetric tridiagonal
!> matrix T to suitable accuracy. This is an auxiliary code to be
!> called from SSTEMR.
!>
!> To avoid overflow, the matrix must be scaled so that its
!> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
!> accuracy, it should not be much smaller than that.
!>
!> See W. Kahan , Report CS41, Computer Science Dept., Stanford
!> University, July 21, 1966.
!> 

Parameters

N

!>          N is INTEGER
!>          The order of the tridiagonal matrix T.  N >= 0.
!> 

IW

!>          IW is INTEGER
!>          The index of the eigenvalues to be returned.
!> 

GL

!>          GL is REAL
!> 

GU

!>          GU is REAL
!>          An upper and a lower bound on the eigenvalue.
!> 

D

!>          D is REAL array, dimension (N)
!>          The n diagonal elements of the tridiagonal matrix T.
!> 

E2

!>          E2 is REAL array, dimension (N-1)
!>          The (n-1) squared off-diagonal elements of the tridiagonal matrix T.
!> 

PIVMIN

!>          PIVMIN is REAL
!>          The minimum pivot allowed in the Sturm sequence for T.
!> 

RELTOL

!>          RELTOL is REAL
!>          The minimum relative width of an interval.  When an interval
!>          is narrower than RELTOL times the larger (in
!>          magnitude) endpoint, then it is considered to be
!>          sufficiently small, i.e., converged.  Note: this should
!>          always be at least radix*machine epsilon.
!> 

W

!>          W is REAL
!> 

WERR

!>          WERR is REAL
!>          The error bound on the corresponding eigenvalue approximation
!>          in W.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:       Eigenvalue converged
!>          = -1:      Eigenvalue did NOT converge
!> 

Internal Parameters:

!>  FUDGE   REAL            , default = 2
!>          A  to widen the Gershgorin intervals.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 143 of file slarrk.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK