Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slansp.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slansp.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slansp.f

SYNOPSIS

Functions/Subroutines


real function SLANSP (norm, uplo, n, ap, work)
SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

Function/Subroutine Documentation

real function SLANSP (character norm, character uplo, integer n, real, dimension( * ) ap, real, dimension( * ) work)

SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

Purpose:

!>
!> SLANSP  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the  element of  largest absolute value  of a
!> real symmetric matrix A,  supplied in packed form.
!> 

Returns

SLANSP

!>
!>    SLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 

Parameters

NORM

!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in SLANSP as described
!>          above.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          symmetric matrix A is supplied.
!>          = 'U':  Upper triangular part of A is supplied
!>          = 'L':  Lower triangular part of A is supplied
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, SLANSP is
!>          set to zero.
!> 

AP

!>          AP is REAL array, dimension (N*(N+1)/2)
!>          The upper or lower triangle of the symmetric matrix A, packed
!>          columnwise in a linear array.  The j-th column of A is stored
!>          in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
!> 

WORK

!>          WORK is REAL array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
!>          WORK is not referenced.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file slansp.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK