table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slagv2.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slagv2.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slagv2.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SLAGV2 (a, lda, b, ldb, alphar, alphai, beta,
csl, snl, csr, snr)
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2
matrix pencil (A,B) where B is upper triangular.
Function/Subroutine Documentation¶
subroutine SLAGV2 (real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( 2 ) alphar, real, dimension( 2 ) alphai, real, dimension( 2 ) beta, real csl, real snl, real csr, real snr)¶
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
Purpose:
!> !> SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 !> matrix pencil (A,B) where B is upper triangular. This routine !> computes orthogonal (rotation) matrices given by CSL, SNL and CSR, !> SNR such that !> !> 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 !> types), then !> !> [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] !> [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] !> !> [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] !> [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], !> !> 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, !> then !> !> [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] !> [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] !> !> [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] !> [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] !> !> where b11 >= b22 > 0. !> !>
Parameters
A
!> A is REAL array, dimension (LDA, 2) !> On entry, the 2 x 2 matrix A. !> On exit, A is overwritten by the ``A-part'' of the !> generalized Schur form. !>
LDA
!> LDA is INTEGER !> THe leading dimension of the array A. LDA >= 2. !>
B
!> B is REAL array, dimension (LDB, 2) !> On entry, the upper triangular 2 x 2 matrix B. !> On exit, B is overwritten by the ``B-part'' of the !> generalized Schur form. !>
LDB
!> LDB is INTEGER !> THe leading dimension of the array B. LDB >= 2. !>
ALPHAR
!> ALPHAR is REAL array, dimension (2) !>
ALPHAI
!> ALPHAI is REAL array, dimension (2) !>
BETA
!> BETA is REAL array, dimension (2) !> (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the !> pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may !> be zero. !>
CSL
!> CSL is REAL !> The cosine of the left rotation matrix. !>
SNL
!> SNL is REAL !> The sine of the left rotation matrix. !>
CSR
!> CSR is REAL !> The cosine of the right rotation matrix. !>
SNR
!> SNR is REAL !> The sine of the right rotation matrix. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky,
USA
Definition at line 155 of file slagv2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |