Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/dsgt01.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/dsgt01.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/dsgt01.f

SYNOPSIS

Functions/Subroutines


subroutine DSGT01 (itype, uplo, n, m, a, lda, b, ldb, z, ldz, d, work, result)
DSGT01

Function/Subroutine Documentation

subroutine DSGT01 (integer itype, character uplo, integer n, integer m, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) d, double precision, dimension( * ) work, double precision, dimension( * ) result)

DSGT01

Purpose:

!>
!> DDGT01 checks a decomposition of the form
!>
!>    A Z   =  B Z D or
!>    A B Z =  Z D or
!>    B A Z =  Z D
!>
!> where A is a symmetric matrix, B is
!> symmetric positive definite, Z is orthogonal, and D is diagonal.
!>
!> One of the following test ratios is computed:
!>
!> ITYPE = 1:  RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp )
!>
!> ITYPE = 2:  RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp )
!>
!> ITYPE = 3:  RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp )
!> 

Parameters

ITYPE

!>          ITYPE is INTEGER
!>          The form of the symmetric generalized eigenproblem.
!>          = 1:  A*z = (lambda)*B*z
!>          = 2:  A*B*z = (lambda)*z
!>          = 3:  B*A*z = (lambda)*z
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          symmetric matrices A and B is stored.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

M

!>          M is INTEGER
!>          The number of eigenvalues found.  0 <= M <= N.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA, N)
!>          The original symmetric matrix A.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDB, N)
!>          The original symmetric positive definite matrix B.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

Z

!>          Z is DOUBLE PRECISION array, dimension (LDZ, M)
!>          The computed eigenvectors of the generalized eigenproblem.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= max(1,N).
!> 

D

!>          D is DOUBLE PRECISION array, dimension (M)
!>          The computed eigenvalues of the generalized eigenproblem.
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (N*N)
!> 

RESULT

!>          RESULT is DOUBLE PRECISION array, dimension (1)
!>          The test ratio as described above.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 144 of file dsgt01.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK