Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dppequ.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dppequ.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dppequ.f

SYNOPSIS

Functions/Subroutines


subroutine DPPEQU (uplo, n, ap, s, scond, amax, info)
DPPEQU

Function/Subroutine Documentation

subroutine DPPEQU (character uplo, integer n, double precision, dimension( * ) ap, double precision, dimension( * ) s, double precision scond, double precision amax, integer info)

DPPEQU

Purpose:

!>
!> DPPEQU computes row and column scalings intended to equilibrate a
!> symmetric positive definite matrix A in packed storage and reduce
!> its condition number (with respect to the two-norm).  S contains the
!> scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
!> B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
!> This choice of S puts the condition number of B within a factor N of
!> the smallest possible condition number over all possible diagonal
!> scalings.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

AP

!>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
!>          The upper or lower triangle of the symmetric matrix A, packed
!>          columnwise in a linear array.  The j-th column of A is stored
!>          in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
!> 

S

!>          S is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, S contains the scale factors for A.
!> 

SCOND

!>          SCOND is DOUBLE PRECISION
!>          If INFO = 0, S contains the ratio of the smallest S(i) to
!>          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
!>          large nor too small, it is not worth scaling by S.
!> 

AMAX

!>          AMAX is DOUBLE PRECISION
!>          Absolute value of largest matrix element.  If AMAX is very
!>          close to overflow or very close to underflow, the matrix
!>          should be scaled.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 115 of file dppequ.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK