Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cuncsd2by1.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cuncsd2by1.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cuncsd2by1.f

SYNOPSIS

Functions/Subroutines


subroutine CUNCSD2BY1 (jobu1, jobu2, jobv1t, m, p, q, x11, ldx11, x21, ldx21, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, work, lwork, rwork, lrwork, iwork, info)
CUNCSD2BY1

Function/Subroutine Documentation

subroutine CUNCSD2BY1 (character jobu1, character jobu2, character jobv1t, integer m, integer p, integer q, complex, dimension(ldx11,*) x11, integer ldx11, complex, dimension(ldx21,*) x21, integer ldx21, real, dimension(*) theta, complex, dimension(ldu1,*) u1, integer ldu1, complex, dimension(ldu2,*) u2, integer ldu2, complex, dimension(ldv1t,*) v1t, integer ldv1t, complex, dimension(*) work, integer lwork, real, dimension(*) rwork, integer lrwork, integer, dimension(*) iwork, integer info)

CUNCSD2BY1

Purpose:

!>
!> CUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
!> orthonormal columns that has been partitioned into a 2-by-1 block
!> structure:
!>
!>                                [  I1 0  0 ]
!>                                [  0  C  0 ]
!>          [ X11 ]   [ U1 |    ] [  0  0  0 ]
!>      X = [-----] = [---------] [----------] V1**T .
!>          [ X21 ]   [    | U2 ] [  0  0  0 ]
!>                                [  0  S  0 ]
!>                                [  0  0  I2]
!>
!> X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P,
!> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
!> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
!> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a
!> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).
!>
!> 

Parameters

JOBU1

!>          JOBU1 is CHARACTER
!>          = 'Y':      U1 is computed;
!>          otherwise:  U1 is not computed.
!> 

JOBU2

!>          JOBU2 is CHARACTER
!>          = 'Y':      U2 is computed;
!>          otherwise:  U2 is not computed.
!> 

JOBV1T

!>          JOBV1T is CHARACTER
!>          = 'Y':      V1T is computed;
!>          otherwise:  V1T is not computed.
!> 

M

!>          M is INTEGER
!>          The number of rows in X.
!> 

P

!>          P is INTEGER
!>          The number of rows in X11. 0 <= P <= M.
!> 

Q

!>          Q is INTEGER
!>          The number of columns in X11 and X21. 0 <= Q <= M.
!> 

X11

!>          X11 is COMPLEX array, dimension (LDX11,Q)
!>          On entry, part of the unitary matrix whose CSD is desired.
!> 

LDX11

!>          LDX11 is INTEGER
!>          The leading dimension of X11. LDX11 >= MAX(1,P).
!> 

X21

!>          X21 is COMPLEX array, dimension (LDX21,Q)
!>          On entry, part of the unitary matrix whose CSD is desired.
!> 

LDX21

!>          LDX21 is INTEGER
!>          The leading dimension of X21. LDX21 >= MAX(1,M-P).
!> 

THETA

!>          THETA is REAL array, dimension (R), in which R =
!>          MIN(P,M-P,Q,M-Q).
!>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
!>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
!> 

U1

!>          U1 is COMPLEX array, dimension (P)
!>          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
!> 

LDU1

!>          LDU1 is INTEGER
!>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
!>          MAX(1,P).
!> 

U2

!>          U2 is COMPLEX array, dimension (M-P)
!>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
!>          matrix U2.
!> 

LDU2

!>          LDU2 is INTEGER
!>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
!>          MAX(1,M-P).
!> 

V1T

!>          V1T is COMPLEX array, dimension (Q)
!>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
!>          matrix V1**T.
!> 

LDV1T

!>          LDV1T is INTEGER
!>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
!>          MAX(1,Q).
!> 

WORK

!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK and RWORK
!>          arrays, returns this value as the first entry of the WORK
!>          and RWORK array, respectively, and no error message related
!>          to LWORK or LRWORK is issued by XERBLA.
!> 

RWORK

!>          RWORK is REAL array, dimension (MAX(1,LRWORK))
!>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
!>          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
!>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
!>          define the matrix in intermediate bidiagonal-block form
!>          remaining after nonconvergence. INFO specifies the number
!>          of nonzero PHI's.
!> 

LRWORK

!>          LRWORK is INTEGER
!>          The dimension of the array RWORK.
!>
!>          If LRWORK=-1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK and RWORK
!>          arrays, returns this value as the first entry of the WORK
!>          and RWORK array, respectively, and no error message related
!>          to LWORK or LRWORK is issued by XERBLA.
!> 

IWORK

!>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  CBBCSD did not converge. See the description of WORK
!>                above for details.
!> 

References:

[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 253 of file cuncsd2by1.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK